Lesson 2 Diffractometers

Nicola Döbelin RMS Foundation, Bettlach, Switzerland

October 03 - 05, 2016, Maastricht, NL

••••• Testing • Research • Consulting

Repetition: Generation of X-rays / Diffraction

Repetition: Generation of X-rays

Repetition: Powder Diffraction

 $\mathbf{n} \cdot \mathbf{\lambda} = 2 \cdot \mathbf{d} \cdot \sin(\mathbf{\theta})$

Repetition: Powder Diffractometer

Analogue Cameras

Debye-Scherrer Camera:

Digital Diffractometers

Bragg-Brentano Parafocusing Diffractometer

Instruments

Lab	Instrument	Monochromator	Configuration
RMS Foundation	Bruker D8	Energy dispersive Detector	Bragg-Brentano (Reflection) Debye-Scherrer (Capillary)
Uni Bern	Panalytical X'Pert	Ni-Filter	Bragg-Brentano (Reflection)
Uni Bern	Panalytical CubiX	Graphite Monochromator	Bragg-Brentano (Reflection)

Bruker D8

 Panalytical CubiX

Bragg-Brentano Diffractometer

Bragg-Brentano Parafocusing Diffractometer

Bragg-Brentano Parafocusing Diffractometer

Beam Divergence

Divergence Slit

Soller Slit

Beam Masks

Many optical elements = many options to optimize data quality

How to find the best configuration?

Optimum Settings: Divergence Slit

Optimum Settings: Divergence Slit

Fixed vs. Variable Divergence Slit

Divergence Slit: Irradiated Length

Soller Slits: 0.02 rad, Beam Mask: 10mm

Optimum Settings: Divergence Slit

Beam Mask

Beam Mask

Soller Slits: 0.02 rad, Irradiated Length: 10mm

Optimum Settings: Divergence Slit

Using sample holders of various sizes?

➡ Match your Divergence Slit and Beam Mask!

Soller Slits / Collimators

In primary & secondary beam, Beam Mask: 10mm, Irradiated Length: 10mm

Receiving Slit / Detector Slit

 AI_2O_3 , 15 mm irradiated length, 2.5° soller slit

Optical Element	Effect on Spectrum	Effect on Intensity
Kβ Filter	Reduces Kβ peaks	Moderate loss
Graphite Monochromator	Eliminates Kβ peaks Eliminates Fluorescence	Strong loss
Multi-bounce Monochromator	Eliminates Kβ and Kα ₂ Eliminates Fluorescence	Massive loss (mostly used on Synchrotrons)
Energy dispersive Detector	Reduces Kβ peaks Eliminates Fluorescence	No loss

Summary: Optical Elements

Optical Element	Effect	Too Small	Too Large
Divergence Slit	Adjusts beam length on the sample	Loss of intensity	Beam spills over sample
Soller Slit	Reduces peak asymmetry	Loss of intensity, Better resolution	More asymmetry, Less resolution
Anti-Scatter Slit	Reduces background signal	Loss of intensity	High background
Beam Mask	Adjusts beam width on the sample	Loss of intensity	Beam spills over sample
Receiving Slit	Adjusts peak width /	Loss of intensity	Loss of resolution
	resolution	Better resolution	Higher intensity
Kβ Filter	Reduces K _β peaks	-	-
Graphite Monochromator	Eliminates Kβ peaks	-	-

Bragg-Brentano Parafocusing Diffractometer

Detectors

Detector Type

Example

Key

Features

Lab	Instrument	Monochr.	Detector
RMS Foundation	Bruker D8	Energy dispersive Detector	1D LynxEye XE
Uni Bern	Panalytical X'Pert	Ni-Filter	1D X'Celerator
Uni Bern	Panalytical CubiX	Graphite	0D Scintillation Counter

Bruker D8

Measurement parameters

- Angular Range
- Step Size
- Counting Time

Angular Range

Step Size

Time per Step

Noise or peak?

Data Quality Checklist

Check beam paths Tube \rightarrow Sample \rightarrow Detector

Data Quality Checklist

For linear detector with $K\beta$ filter

		Optical Element	Ideal setup
path		Divergence Slit	Automatic Max irr. length w/o beam overflow
beam		Soller Slit	Installed Small opening
Icident		Mask	Installed (if available) Max irr. width w/o beam overflow
<u>_</u>	V	Anti-scatter slit	Identical to divergence slit
÷		Sample	Spinning
ם ר		Anti-scatter slit	Wide open
d bean		Soller slit	Installed Small opening
acte		Additional slits	Wide open
Diffra		Kβ filter	Installed

