Lesson 3"How-To" Session

Nicola DöbelinRMS Foundation, Bettlach, Switzerland

March 3, 2015, Lyon, France

Refinement Strategy: Words of Wisdom

Always refining everythingmay lead to good fits, but the results may be useless.

Release parameters one by one. When the fit doesn't improve anymore, don't try to extract more information.

Chose your refinement strategy wisely. Ask yourself if the results makephysical sense.

Example 1: Texture, preferred orientationExample 2: Anisotropic crystallite sizesExample 3: Non-existent phasesExample 4: Micro-absorption and Brindley correctionExample 5: Amorphous Content

Texture, Preferred Orientation

Needles, Fibers, Whiskers

lying flat

lying flatmay point in one direction (bundles)

Random orientation **Preferred orientation**

Images: L. Galea, RMS Foundation

Texture, Preferred Orientation

Smooth, but non-continuousdiffraction rings

Some orientations areover-represented,others are under-represented.

Bruker AXS

Texture: Symmetrized Spherical Harmonics

In structure files (*.str) change:

PARAM=GEWICHT=0.1_0

to

GEWICHT=SPHARn

(n=0, 2, 4, 6, 8, 10)

Järvinen, M. Materials Science Forum [278-281], 1998, 184-199.

Instrument: pw1800-fds

Phases: Corundum, Fluorite

Instrument: pw1800-fds

Phases: Corundum, Fluorite

- Refining «GEWICHT» with symmetrized spherical harmonicsfunctions allows to model texture / preferred orientation.
- Complexity of the polynome can be set in structure file (SPHARn).
- High order introduce large number of refined parameters. $(\Rightarrow$ slow refinement, may get unstable)
- Automatic refinement strategy will protect from over-interpretation.

Recommendation:

- - Use a moderate order of SPHAR polynomes in yourstructure files (e.g. SPHAR4)
- Let BGMN reduce the order if necessary
- Only increase the order if the fit really improves

Anisotropic Crystallite Sizes

Anisotropic Crystallite Sizes

Platelets Needles, Fibers, Whiskers

Refine anisotropic crystallite sizes with «B1=ANISO»Refine anisotropic micro-strain with «k2=ANISO4»

Recommendation:

- -Do not refine micro-strain anisotropically unless it improves the fit
- -Refine peak broadening anisotropically (B1=ANISO^0.01), let BGMN handle the reduction to isotropy
- - Check if the upper limit of B1 was reached. If yes:
	- increase the limit…
	- … or see next example (non-existent phases)

Experimental design:

Step 1:

- ^α-TCP prepared at 1350 °C
- Traces of β-TCP may have formed during cooling

Step 2:

- ^α-TCP hydrated to Hydroxylapatite
- β-TCP (if present) remains

Question:

Is β-TCP present after setting?

Background Information:

- If β -TCP is present, it has formed at ~1000 \degree C
- Must be highly crystalline with large crystallites

Solutions:

- Use a reasonable upper limit for B1 (peak broadening, crystallite size)
- Don't trust very small crystallite sizes (e.g. < 20 nm)
- Repeat the refinement without the questionable phase(Does the fit really look worse? Or just as good?)
- Use additional information:
	- Sintered samples: very small crystallites are unlikely
	- Cement samples: very small crystallites are reasonable

1. Edit betaTCP.str

How to choose the upper limit for B1?

RMS

Micro-absorption

Phase 1: High absorptioncoefficient for X-radiation

Micro-absorption

Strong attenuation by phase ¹

Large particles absorb significantpart of the radiation.

→ Small volume of interaction

Weak attenuation by phase 2

→ Large volume of interaction

Small particles absorb insignificant part of the radiation.

 \rightarrow Volumes of interaction with
Inhases 1.8. 2 are representat phases 1 & 2 are representativefor phase composition

Micro-absorption and Brindley Correction

Micro-absorption can be corrected, but mean particle* size must be known.

*not crystallite size

Example 4 – Micro-Absorption

Add mean particle diameter (μm) to structure files:

my (μ) = mass absorption coefficient (calculated automatically by BGMN)

Example 4 – Micro-Absorption

Example 4 – Micro-Absorption

Micro-Absorption and Brindley correction:

- Try to avoid the problem in the first place (keep particle
eize elese to 1 um) size close to 1 μ m)
- -Additional information (particle size from SEM, PSD analysis) required for all refined phases!
- - Large particles still lead to grainy diffraction patterns. Brindleycorrection does **not** solve this problem!

Question: Does this sample contain amorphous material?

Problem: Amorphous phases

- -Don't procude a distinct diffraction pattern
- -Create a broad bump around 30° ²θ

Most common solution:

Internal Standard

Challenge: Selection of internal standard material:

- Must be 100% crystalline
- Simple structure (cubic)
- No texture or micro-absorption problems
- Absorption coefficient similar to matrix
- Absolutely homogeneous mixing
- Must not react with sample matrix

Common materials:Si

LiF

Monetite was a bad choice:

- **Triclinic**
- Large crystals (micro-absorption)
- Severe texture effects

