Lesson 3 "How-To" Session

Nicola Döbelin RMS Foundation, Bettlach, Switzerland

Refinement Strategy: Words of Wisdom

Always refining everything may lead to good fits, but the results may be useless.

Release parameters one by one.
When the fit doesn't improve anymore,
don't try to extract more information.

Chose your refinement strategy wisely.

Ask yourself if the results make physical sense.

Examples

Example 1: Texture, preferred orientation

Example 2: Anisotropic crystallite sizes

Example 3: Non-existent phases

Example 4: Micro-absorption and Brindley correction

Texture, Preferred Orientation

Platelets

lying flat

Needles, Fibers, Whiskers

lying flat may point in one direction (bundles)

Random orientation

Preferred orientation

Images: L. Galea, RMS Foundation

Texture, Preferred Orientation

Smooth, but non-continuous diffraction rings

Some orientations are over-represented, others are under-represented.

Bruker AXS

Texture: Symmetrized Spherical Harmonics

In structure files (*.str) change:

PARAM=GEWICHT=0.1_0

to

GEWICHT=SPHARn

(n=0, 2, 4, 6, 8, 10)

GEWICHT=SPHAR4

GEWICHT=SPHAR8

GEWICHT=SPHAR2

GEWICHT=SPHAR6

GEWICHT=SPHAR10

Järvinen, M. Materials Science Forum [278-281], 1998, 184-199.

Instrument: pw1800-fds

Phases: Corundum, Fluorite

Both phases: RP=4 PARAM=k1=0 0^1 PARAM=k2=0 0 PARAM=B1=0 0^0.03 PARAM=GEWICHT=0.1 0 //

Instrument: pw1800-fds

Phases: Corundum, Fluorite

Both phases:

RP=4 PARAM=k1=0 0^1 PARAM=k2=0 0 PARAM=B1=0 0^0.03 GEWICHT=SPHAR4 //

- Refining «GEWICHT» with symmetrized spherical harmonics functions allows to model texture / preferred orientation.
- Complexity of the polynome can be set in structure file (SPHARn).
- High order introduce large number of refined parameters.
 (→ slow refinement, may get unstable)
- Automatic refinement strategy will protect from over-interpretation.

Recommendation:

- Use a moderate order of SPHAR polynomes in your structure files (e.g. SPHAR4)
- Let BGMN reduce the order if necessary
- Only increase the order if the fit really improves

Anisotropic Crystallite Sizes

Anisotropic Crystallite Sizes

Platelets

Needles, Fibers, Whiskers

Small size Strong peak broadening

Images: L. Galea, RMS Foundation

Refine anisotropic crystallite sizes with «B1=ANISO»

Refine anisotropic micro-strain with «k2=ANISO4»

Recommendation:

- Do not refine micro-strain anisotropically unless it improves the fit
- Refine peak broadening anisotropically (B1=ANISO^0.01),
 let BGMN handle the reduction to isotropy
- Check if the upper limit of B1 was reached. If yes:
 - increase the limit...
 - ... or see next example (non-existent phases)

Experimental design:

Step 1:

- α-TCP prepared at 1350 °C
- Traces of β-TCP may have formed during cooling

Step 2:

- α-TCP hydrated to Hydroxylapatite
- β-TCP (if present) remains

Question:

- Is β-TCP present after setting?

Background Information:

- If β-TCP is present, it has formed at ~1000°C
- Must be highly crystalline with large crystallites

C:\Users\doebelinn\Desktop\Examples-Test\Lesson 7\Example 3\ex3-file1.lst $R_{wo}=14.08\%$, $R_{exp}=12.93\%$, $X^2=1.0889$

mb =	SECTION OF THE PARTY OF	7070
Parameter / Goal	Value	ESD
hap/(hap+betaTCP)	0.762	0.051
betaTCP/(hap+betaTCP)	0.238	0.051

GrainSize(1,1,1) = 2.47 + -0.44

Solutions:

- Use a reasonable upper limit for B1 (peak broadening, crystallite size)
- Don't trust very small crystallite sizes (e.g. < 20 nm)
- Repeat the refinement without the questionable phase (Does the fit really look worse? Or just as good?)
- Use additional information:
 - Sintered samples: very small crystallites are unlikely
 - Cement samples: very small crystallites are reasonable

1. Edit betaTCP.str

3. Run Refinement...

C:\Users\doebelinn\Desktop\Examples-Test\Lesson 7\Example 3\ex3-file1.lst $R_{wp}{=}14.23\%,\ R_{exp}{=}12.94\%,\ X^2{=}1.0997$

Parameter / Goal	Value	ESD
hap/(hap+betaTCP)	0.9973	0.0021
betaTCP/(hap+betaTCP)	0.0027	0.0021

How to choose the upper limit for B1?

Upper limit B1	Crystallite Size β-TCP	Quantity β-TC
None	2 nm	23.8 wt-%
0.1	4 nm	14.6 wt-%
0.05	8 nm	7.0 wt-%
0.01	42 nm	0.4 wt-%
0.005	85 nm	0.8 wt-%
0.001	424 nm	0.2 wt-%
0.0005	849 nm	0.2 wt-%
0	∞	0.2 wt-%

- → Crystallites of several100 nm diameter expected
- → Any other useful data available?
 - Other samples which do contain β-TCP?
 - Before cement reaction?

Micro-absorption

Phase 1: High absorption coefficient for X-radiation

Micro-absorption

Strong attenuation by phase 1

Large particles absorb significant part of the radiation.

→ Small volume of interaction

Weak attenuation by phase 2

→ Large volume of interaction

Small particles absorb insignificant part of the radiation.

→ Volumes of interaction with phases 1 & 2 are representative for phase composition

Micro-absorption and Brindley Correction

Micro-absorption can be corrected, but mean particle* size must be known.

*not crystallite size

Reference mixture:

Add mean particle diameter (µm) to structure files:

```
lesson5-ex4-file1.dia
                                      lesson5-ex4-file1.lst
                                                        Corundum.str 🔯
                   lesson5-ex4-file1.sav
                                                                      Fluorite.str
                                                                                  LiF.str
PHASE=Corundum A1203 // 04-004-2852
SpacegroupNo=167 Setting=1 HermannMauguin=R-32/c //
PARAM=A=0.4760 0.4712^0.4808 PARAM=C=1.2993 1.2863^1.3123 //
                                                                                    Corundum: 12 µm
RP=4 PARAM=k1=0 0^1 k2=ANISO4 B1=ANISO^0.01 GEWICHT=SPHAR8 //
GOAL=GrainSize(1,1,1) //
                                                                                    Fluorite: 10 µm
d=12 //
GOAL=d //
                                                                                    LiF: 9 μm
GOAL=mv //
GOAL:corundum=GEWICHT*ifthenelse(ifdef(d),exp(my*d*3/4),1)
E=AL Wyckoff=c x=0.0000 y=0.0000 z=0.3522 TDS=0.00224764
E=O-2 Wyckoff=e x=0.3062 y=0.0000 z=0.2500 TDS=0.00271875
```

my (μ) = mass absorption coefficient (calculated automatically by BGMN)

Micro-Absorption and Brindley correction:

- Try to avoid the problem in the first place (keep particle size close to 1 μ m)
- Additional information (particle size from SEM, PSD analysis) required for all refined phases!
- Large particles still lead to grainy diffraction patterns. Brindleycorrection does not solve this problem!

Bruker AXS

Question: Does this sample contain amorphous material?

Problem: Amorphous phases

- Don't procude a distinct diffraction pattern
- Create a broad bump around 30° 2θ

Most common solution:

Internal Standard

Phase		Mixed	Refined	Normalized to int. Std.	Normalized w/o int. Std.
Amorphous	?	Σ 70.0 μd 9/	-	Fill up to 100% = 25.2 wt-%	36 wt-%
β-ТСР	?	$\Sigma = 70.0 \text{ wt-}\%$	59.9 wt-%	59.9 * 0.748 = 44.8 wt-%	64 wt-%
Internal Standard	3	0.0 wt-%	40.1 wt-%	40.1 * 0.748 = 30.0 wt-%	-

Example 5 File 2					
Sample	β-TCP + amorphous phase	70 wt-%			
Internal Standard	Monetite	30 wt-%			

Phase	Mixed	Refined	Normalized to int. Std.	Normalized w/o int. Std.
Amorphous	?	-	25.22	36.03
b-TCP	?	59.88	44.78	63.97
Internal Standard	30.00	40.12	30.00	\

Gap between (44.78 + 30)% and 100%

Challenge: Selection of internal standard material:

- Must be 100% crystalline
- Simple structure (cubic)
- No texture or micro-absorption problems
- Absorption coefficient similar to matrix
- Absolutely homogeneous mixing
- Must not react with sample matrix

Common materials:

- Si
- liF

Monetite was a bad choice:

- Triclinic
- Large crystals (micro-absorption)
- Severe texture effects

