Lesson 9 Instrument Configuration Files

Nicola Döbelin RMS Foundation, Bettlach, Switzerland

Instrument configuration file

cubix-ads-10mm.geq		
Structures		
File Name	Phase	Cor
Ag.str	Ag	04-0
Ag20.str	Ag2O	04-(
AgNO2.str	AgNitrite	04-0
Al.str	AI	04-0
Al2O3-Corundum.str	Corundum_Al2O3	04-0
Al2O3-theta.str	Al2O3-theta	01-0
alpha_Ft.str	alpha_Ft	
alphaCMP.str	alphaCaMetaphosphate	04-0
alphaCPP.str	alphaCaPyrophosphate	04-0
alphaTCP.str	alphaTCP	04-0
AmmoniumDihydrogenPhosphate.str	AmmoniumDihydrogenPhosphate	01-0
Ammoniumsulphate.str	Ammoniumsulphate	04-0
Anatase.str	Anatase	04-0
Aragonite.str	Aragonite	01-0
Arcanite.str	K2SO4	04-0
Ardealite.str	Ardealite	04-0
honzois asid etc	Pantois Asid	CSD
() () () () () () () () () ()		

4

Instrument configuration file

Profex - 3.3.1					
<u>File Edit View Run</u> Instrument	<u>W</u> indow <u>H</u> elp				
🖺 🎦 🗜 🖳 🔚 🔏 📄 🤏 🍣 🥪 🚡 💠 🗕 🕟 💿 🔍 💷					
rojects 🗗 🗙 ex4-file1.XRDML 🗵 ex4-file1.sav* 🔀 ex4-file1.lst 🔀					
Name Status	% Theoretical instrumental function				
ex4-file1 idle	<pre>VERZERR=cubix-ads-10mm.geq % Wavelength LAMBDA=CU % Polarization (CuKa with Graphite monochromator) POL=sqr(cos(26.6*pi/180)) pi=2*acos(0) % Phases % Measured data VAL[1]=ex4-file1.xy % Minimum Angle (2theta) % WMIN=10 % Maximum Angle (2theta) % WMIN=10 % Maximum Angle (2theta) % WMAX=60 % Result list output LIST=ex4-file1.lst % Peak list output OUTPUT=ex4-file1.par % Diagram output DIAGRAMM=ex4-file1.dia % Global parameters for zero point and sample displacement EPS1=0 PARAM[1]=EPS2=00.01^0.01 alpha3ratio=0.02</pre>				

Fundamental Parameters Approach

Description of the peak profile

Instrument Configuration Files

Create / edit manually

File	Description
Instrument.sav	Description of the instrument configuration
Instrument.ger	Calculated profile
Instrument.geq	Interpolated profile
Instrument.tpl	Template for *.sav control file for this configuration ¹⁾ (Empty *.sav file)

All these files are stored in

 $...\Profex-BGMN-Bundle-3.3.1\Profex\Devices$

¹⁾ Optional, only used by Profex, not required for BGMN

Instrument Configuration Files

Try to find an instrument configuration with...

- ✤ ... the same manufacturer
- ✤ ... the same model
- ... the same detector
- ... the same divergence slit mode (FDS / ADS)

Example Your instrument: Bruker D8 Advance LynxEye detector Automatic Divergence Slit

Modify configuration «d8-lynxeye-ads-1mm.sav»

Instrument Configuration - I:/DL/DoebelinN/BGMN-Templates/Devic	es/d8-lynxeye-ads-1mm.sav
% % Divergence slit %	
<pre>% Note: BGMN requires the width of the slit in mm. % trigonometric functions to calculate the with in % distance of the slit from the sample, and 2theta % If the distance of the slit is not known exactly % radius R for HSlitR. It will lead to a different % will always be correct. HSlitW will calculate th % of "irr" mm. % irradiated length (mm) irr=1</pre>	For automatic divergence slits we must use mm as a function of irradiated length, angle. , enter a value shorter than the goniometer slit opening, but the divergence of the beam e slit width resulting in a irradiated length
% distance from sample (mm) HSlitR=100	
% automatic slit width (mm) HSlitW=(2*(R-HSlitR)*irr*sin(pi*zweiTheta/360))/(2	*R+irr*cos(pi*zweiTheta/360))
% % Detector	
% Note: The LynxEye detector has a DetW of 0.075 m % The value for DetW used here was fitted to a LaB	m, but this results in wrong crystallite sizes. 6 pattern to obtain realistic cryst sizes.
% total detector height (mm) DetArrayW=14.4 % height of one strip (mm)	- Go through the file line by line
Calculations	- Change values to match your configuration
Raytrace (GEOMET)	
Interpolate (MakeGEQ)	- Verify ALL values
Calculate Profile (GERTEST)	
	Save As Save

Computing Peak Profile

Computing Peak Profile

Computation may take several minutes

Computing Peak Profile

Name	Änderungsdatum	Тур	Größe 🗖
d8-lynxeye-fds-02.ger	04.06.2012 18:06	GER-Datei	
d8-lynxeye-fds-02.sav	12.02.2014 07:41	SAV-Datei	
d8-lynxeye-fds-02.tpl	08.09.2014 10:08	TPL-Datei	
d8-lynxeye-fds-06mm.geq	12.11.2012 12:57	GEQ-Datei	
d8-lynxeye-fds-06mm.ger	12.11.2012 12:57	GER-Datei	
📄 d8-lynxeye-fds-06mm.sav	12.02.2014 07:41	SAV-Datei	
d8-lynxeye-fds-06mm.tpl	08.09.2014 10:08	TPL-Datei	E
d8-solxe-fds-0600.geq	16.01.2013 15:16	GEQ-Datei	
d8-solxe-fds-0600.ger	16.01.2013 15:15	GER-Datei	
d8-solxe-fds-0600.sav	12.02.2014 07:41	SAV-Datei	
d8-solxe-fds-0600.tpl	08.09.2014 10:08	TPL-Datei	
d8-solxe-vds-12mm.geq	16.01.2013 15:17	GEQ-Datei	
d8-solxe-vds-12mm.ger	16.01.2013 15:17	GER-Datei	
📄 d8-solxe-vds-12mm.sav	12.02.2014 07:41	SAV-Datei	
d8-solxe-vds-12mm.tpl	08.09.2014 10:08	TPL-Datei	Computed peak profile
my-d8.geq	11.01.2010 14:54	GEQ-Datei	
🗋 mv-d8.ger	11.01.2015 14:34	GER-Datei	
imy-d8.sav	11.01.2015 14:34	SAV-Datei	
my-d8.xy	11.01.2015 14:34	XY-Datei	
pw1800-ads-10mm.geq	12.06.2012 15:01	GEQ-Dater	
pw1800-ads-10mm.ger	12.06.2012 15:01	GER-Datei	- Instrument description

Template SAV file (*.tpl)

Template file for *.sav control file:

Name	Änderungsdatum	Тур	Größe 🗖
d8-fds-02-LynxEyeXE.sav	12.02.2014 07:41	SAV-Datei	
d8-fds-02-LynxEyeXE.tpl	24.10.2013 11:33	TPL-Datei	
d8-lynxeye-ads-1mm.geq	02.07.2013 12:42	GEQ-Datei	
d8-lynxeye-ads-1mm.ger	02.07.2013 12:42	GER-Datei	
d8-lynxeye-ads-1mm.sav	12.02.2014 07:41	SAV-Datei	
d8-lynxeye-ads-1mm.tpl	08.09.2014 10:08	TPL-Datei	
d8-lynxeye-fds-02.geq	04.06.2012 18:06	GEQ-Datei	
d8-lynxeye-fds-02.ger	04.06.2012 18:06	GER-Datei	
d8-lynxeye-fds-02.sav	12.02.2014 07:41	SAV-Datei	
d8-lynxeye-fds-02.tpl	08.09.2014 10:08	TPL-Datei	
d8-lynxeye-fds-06mm.geq	12.11.2012 12:57	GEQ-Datei	
d8-lynxeye-fds-06mm.ger	12.11.2012 12:57	GER-Datei	
d8-lynxeye-fds-06mm.sav	12.02.2014 07:41	SAV-Datei	
d8-lynxeye-fds-06mm.tpl	08.09.2014 10:08	TPL-Datei	
d8-solxe-fds-0600.geq	16.01.2013 15:16	GEQ-Datei	
d8-solxe-fds-0600.ger	16.01.2013 15:15	GER-Datei	
d8-solxe-fds-0600.sav	12.02.2014 07:41	SAV-Datei	
d8-solxe-fds-0600.tpl	08.09.2014 10:08	TPL-Datei	
d8-solxe-vds-12mm.geq	16.01.2013 15:17	GEQ-Datei	
d8-solxe-vds-12mm.ger	16.01.2013 15:17	GER-Datei	
d8-solxe-vds-12mm.sav	12.02.2014 07:41	SAV-Datei	
d8-solxe-vds-12mm.tpl	08.09.2014 10:08	TPL-Datei	
my-d8.geq	11.01.2015 14:34	GEQ-Datei	
my-d8.ger	11.01.2015 14:34	GER-Datei	-

Append Phase

tructures			
File Name	Phase	Comr *	
Ag.str	Ag	04-001 =	In «Add Phase
Ag20.str	Ag2O	04-004	
AgNO2.str	AgNitrite	04-005	dialog (+)
Al.str	AI	04-012	0 (
Al2O3-Corundum.str	Corundum_Al2O3	04-004	
Al2O3-theta.str	Al2O3-theta	01-086	
alpha_Ft.str	alpha_Ft		
alphaCMP.str	alphaCaMetaphosphate	04-014	
alphaCPP.str	alphaCaPyrophosphate	04-009	
alphaTCP.str	alphaTCP	04-010	
AmmoniumDihydrogenPhosphate.st	r AmmoniumDihydrogenPhosphate	01-085	
Ammoniumsulphate.str	Ammoniumsulphate	04-005	
Anatase.str	Anatase	04-007	
Aragonite.str	Aragonite	01-071	
Arcanite.str	K2SO4	04-006	
Ardealite.str	Ardealite	04-011	
honzoic acid ste	Panzaia Acid	Cen P	
•			

Verification

Instrument:

✦

Bruker D8 Advance

+	Geometry:	Reflection
+	Goniometer Radius:	350 mm
+	X-ray Tube:	CuKa, Target Size 12 x 0.4 mm
+	Divergence Slit:	Automatic, 15 mm irr. length Distance to sample 250 mm
+	Soller Slits:	2.5° in prim. and sec. beam
+	Beam Mask:	Width 10.5 mm Distance from sample 300 mm
+	Sample Diameter:	25 mm
+	Anti-Scatter Slit:	9mm Distance to sample 260 mm
+	Detector Slit:	Not installed
*	Detector:	LynxEye XE Array height 14.4 mm Height of one strip 0.075 mm Array width 16.0 mm Number of channels 192
•	Beam Knife:	Not installed
+	Polarization:	None

- 1. Start from configuration «d8-lynxeye-ads-1mm.sav»
- 2. Modify according to –
- 3. Save under a new name «d8-lesson9-example1.sav»
- 4. «Run» to compute peak profile
- 5. Copy template file «d8-lynxeye-ads-1mm.tpl» to «d8-lesson9-example1.tpl»
- 6. Verify configuration with scan «SRM-676a.raw»

S Profex - 3.3.1	
<u>File E</u> dit <u>V</u> iew <u>R</u> un Instrument	<u>W</u> indow <u>H</u> elp
Projects 🗗 🗙	NIST-SRM676a.dia 🗵 NIST-SRM676a.sav 🗵 NIST-SRM676a.lst 🗵
Name Status NIST-SRM6 completed	<pre>% Theoretical instrumental function VERZERR=my-d8.geq % Wavelength LAMBDA=CU % Phases STRUC[1]=Al203-Corundum.str % Measured data VAL[1]=NIST-SRM676a.ta % Maximum Angle (2theta) % Maximum Ang</pre>
Refinement Protocol	♂ ✓ Global Parameters and GOALs
-1.2687703E+00 1.31521 -1.1855966E+00 -1.31518 4.4109226E+00 -2.57080 -1.3555352E-01 6.82684 -1.6872237E-16 -2.06909 1.6929296E+02 1.54671	28E-01 -2.2128692E-01 -6.3589769E+01 6.61 51E-01 -1.5172665E-01 6.5798185E-22 -1.16 26E+00 -2.6299858E-01 -2.2128823E-01 6.57 72E+02 5.9122231E+02 2.1891419E+02 5.77 52E-16 2.8532260E+02 2.1800961E+02 1.86 96E+02 1.6009824E+02 1.7239729E+02 1.71 C:\Users\doebelinn\Desktop\Examples-Test\Lesson 9\Example 1\NIST-S Parameter / Goal Value ESD Corundum/sum 1 0
1-rho=0.745%	•
•	III Vavelength: 1.5406 Å Angle: 0.000° Intensity: 0.000 cts d-Spacing: 0.000 Å Line 0, Column 0

Verify refined unit cell dimensions and crystallite size with SRM certificate

National Institute of S Certificate c	standards & Technology of Analysis		
Standard Reference	ce Material® 676a		
Alumina Powder for Quantitativ	e Analysis by X-ray Diffraction		
This Standard Reference Material (SRM) consists of an for use as an internal standard for quantitative analysis determinations by X-ray powder diffraction. A unit of SR in an argon atmosphere.	alumina powder (corundum structure) intended primarily and IJ _c [1] (for a complete discussion of IJ _c , see [2]) M 676a consists of approximately 20 g of powder bottled		
Material Description: The alumina powder has been c state. The alumina grains are sub-micrometer in size a ensures high phase purity while the isometric form of th in this powder. The de-aggregated state of this materi		Certified	Refined
conventional methods. An analysis of the phase fractions determined from X-ra silicon powder SRM 640c [3] indicated that the SR	Unit cell <i>a</i>	0.475936 nm	0.476021 nm
properties. Certified Value: The certified phase purity of the materi	Unit cell <i>c</i>	1.29923 nm	1.299485 nm
Crystalline Alumine	Crystallite size	Sub-micron	131 nm
absence of systematic error [4,5]. The error bounds def 100% phase purity, a physical impossibility.	ine a range about the certified value that is in excess of	8	

Write betaratio=0.0158 to «d8-lesson9-example1.tpl»

my-d8.tpl - Editor	×	-
Datei Bearbeiten Format Ansicht ?		
% Theoretical instrumental function VERZERR= % wavelength LAMBDA=CU % Phases % Measured data VAL[1]= % Minimum Angle (2theta) % MMIN=10 % Maximum Angle (2theta) % WMAX=60 % Result list output LIST= % Peak list output OUTPUT= % Diagram output DIAGRAMM= % Global parameters for zero point and sample displacement EPS1=0 PARAM[1]=EPS2=00.01^0.01 alpha3ratio=0.018 betaratio=0.0158 NTHREADS=2 PROTOKOLL=Y		*
	F.	a

