Lesson 6 "How-To" Session

Nicola Döbelin RMS Foundation, Bettlach, Switzerland

Repetition: Refinement Strategies

- We control which parameters will be refined:
 - Fix / release for refinement («PARAM=»)
 - Set lower and upper limits

Question:

Why not **ALWAYS** refine **EVERYTHING**?

Answer:

Don't try to get more information out of your data than it actually contains!

Refinements can become **unstable**

Correlations can spoil the results

Correlations

Effect in Diffraction Pattern	Origin in Crystal Structure Model
Wrong peak positions	Unit cell dimensions Sample height displacement Zero-shift
Wrong absolute intensities	Weight fraction (scaling)
Wrong relative intensities	Preferred orientation Atomic species / Substitutions Atomic coordinates Site occupancies Thermal displacement parameters
Wrong peak width	Crystallite size Lattice strain

Only with good data we can distinguish the different broadening characteristics of size and strain!

Refinement Strategy: Words of Wisdom

Always refining everything may lead to good fits, but the results may be useless.

Release parameters one by one. When the fit doesn't improve anymore, don't try to extract more information.

Chose your refinement strategy wisely. Ask yourself if the results make physical sense.

Lesson 5: Example 1: Simple phase quantification

Lesson 5: Example 2: Phase quantification with size and micro-strain Lesson 5: Example 5: Batch processing

Lesson 6: Example 1: Texture, preferred orientation Lesson 6: Example 2: Anisotropic crystallite sizes Lesson 6: Example 3: Non-existent phases Lesson 6: Example 4: Micro-absorption and Brindley correction Lesson 6: Example 5: Site occupancies

Texture, Preferred Orientation

Smooth, but non-continuous diffraction rings

Reason:

- Orientation of crystallites is not random.
- Some orientations are over-represented, others are under-represented.

Texture, Preferred Orientation

Platelets

Needles, Fibers, Whiskers

RMS

Texture: Symmetrized Spherical Harmonics

In structure files (*.str) change:

PARAM=GEWICHT=0.1_0

to

GEWICHT=SPHARn

(n=0, 2, 4, 6, 8, 10)

Järvinen, M. Materials Science Forum [278-281], 1998, 184-199.

•••••• Testing • Research • Consulting

RMS

Instrument: pw1800-fds

Phases: Corundum, Fluorite

Instrument: pw1800-fds

Phases: Corundum, Fluorite

Both phases:

RP=4 PARAM=k1=0_0^1 PARAM=k2=0_0 PARAM=B1=0_0^0.03 GEWICHT=SPHAR4 //

- Refining «GEWICHT» with symmetrized spherical harmonics functions allows to model texture / preferred orientation.
- Complexity of the polynome can be set in structure file (SPHAR*n*).
- High order introduce large number of refined parameters.
 (→ slow refinement, may get unstable)
- Automatic refinement strategy will protect from over-interpretation.

Recommendation:

- Use a moderate order of SPHAR polynomes in your structure files (e.g. SPHAR4)
- Let BGMN reduce the order if necessary
- Only increase the order if the fit really improves

Anisotropic Crystallite Sizes

Platelets

Needles, Fibers, Whiskers

Profex - 2.3.1	
<u>File Edit View Run H</u> elp	
Projects 🗗 🗙 lesson6-ex2-file1.dia 🗵 lesson6-ex2-file1.sav 🗵 hydroxylapatite.str 🔀 lesson6-ex2-file1.lst 🗵	
Name Status PHASE=Hydroxyapatite // 01-074-0565 Iesson6-ex2 complete SpacegroupNo=176 HermannMauguin=P6_3/m // PARAM=A=0.9424_0.9330*0.9518 PARAM=C=0.6879_0.6810*0.6948 // RP=4 PARAM=k1=0_0*1 PARAM=k2=0_0 PARAM=B1=0_0*0.1 GEWICHT=SPHAR6 // GOAL=GrainSize(0,0,1) // GOAL=GrainSize(1,0,0) // GOAL=GrainSize(1,0,0) // GOAL=GrainSize(1,0,0) // GOAL=GrainSize(1,0,0) GOAL=GrainSize(1,0,0) GOAL=C+2 Wyckoff=f x=0.3333 y=0.6667 z=0.0015 TDS=0.00664290 E=CA+2 Wyckoff=h x=0.2468 y=0.9934 z=0.2500 TDS=0.00567436 E=P Wyckoff=h x=0.3987 y=0.3685 z=0.2500 TDS=0.00477426 E=0-2 Wyckoff=h x=0.3284 y=0.4848 z=0.2500 TDS=0.00953535 E=0-2 Wyckoff=h x=0.3287 y=0.4651 z=0.2500 TDS=0.0014069 E=0-2 Wyckoff=h x=0.3437 y=0.2579 z=0.0702 TDS=0.01499127 E=0-2 (0.5000) Wyckoff=e x=0.0000 y=0.0000 z=0.01950 TDS=0.00000000 E=0-2 (0.5000) Wyckoff=e x=0.0000 y=0.0000 z=0.01950 TDS=0.00000000	
Change: RP=4 PARAM=k1=0_0^1 PARAM=k2=0_0 PARAM=B1=0_0^0.1 GEWICHT=SPHAR6 // To: RP=4 PARAM=k1=0_0^1 k2=ANISO4 B1=ANISO^0.1 GEWICHT=SPHAR6 // Remove «PARAM=» keyword and lower limit Use ANISO4 for k2, and ANISO for B1	
Angle: 7.019 Intensity: 495.955	

Refine anisotropic crystallite sizes with «B1=ANISO»

```
Refine anisotropic micro-strain with «k2=ANISO4»
```

Recommendation:

- Do not refine micro-strain anisotropically unless it improves the fit
- Refine peak broadening anisotropically (PARAM=k1=0_0^1 B1=ANISO^0.01)
 Iet BGMN handle the reduction to isotropy
- Check if the upper limit of B1 was reached. If yes:
 - increase the limit...
 - ... or see next example (non-existent phases)

Profex - 2.3.1	
<u>File Edit View Run H</u> elp	
🖴 🗹 📍 🖾	
Projects 🗗 🗙	lesson6-ex3-file1.xrdml 🗵 lesson6-ex3-file1.sav 🔝
Name Status lesson6-ex3 idle	C:/xrd/S12_0008/Examples/Lesson 6/Example 3/lesson6-ex3-file 1.xrdml
	Image: 1500 Main Phase: Monetite Image: Traces: Brushite
	Question: Does it contain Hydroxyapatite
	10.00 20.00 30.00 40.00 50.00 60.00 Angle [°20]
 ✓ <u>III</u> Angle: 11.537 Intensity: 103.967 	

Profex - 2.3.1						
<u>Eile Edit View Run H</u> elp						
Projects 🗗 🗙 lesson6-ex3-file1.dia 🔟 lesson6-ex3-file1.sav 💟 brushite.str 💟 hydroxylapatite.str 💟 monetite.str 🔀 lesson6-ex3-file1.lst 🔯						
Name Status Local parameters and GOALs for phase Hydroxyapatite lesson6-ex3 complete SpacegroupNo=176 HermannMauguin=P6_3/m XrayDensity=3.060 Rphase=17.92% Phase						
A=0.951800 C=0.694800 Warning: B1 of hydroxyapatite	•					
A=0.951800 C=0.694800 k1=1.00000 k2=0.00022+-0.00034 GrainSize (1,0,0)=31.8310 GrainSize (1,0,0)=31.8310 GENERATE OF THE						
GrainSize(1,0,0)=31.8310 GEWICHT=0.00039+-0.00013 BalisoTROPIC=0.0100000 Atomic positions for phase Hydroxyapatite	THE STREET					
Angle: 6.626 Intensity: 1853.809	4					

Profex - 2.3.1							×
<u>File Edit View Run H</u> elp							
🗕 😹 🦻 🕞 🔶 💷	^						
Projects 🗗 🗙	lesson6-ex3-file1.dia	lesson6-ex3-file1.s	sav 🖾 🛛 brushite.str 🔝	hydroxylapatite.str 🔯 🛛 🗖	nonetite.str 🔝 lesson6-ex3-file1.lst		
Project Project <t< td=""><td>-</td></t<>							-
	Phase	R [%]	Quantity [wt-%]	Mean Gewicht [a.n.]	Crystallite Sizes [nm]	Density [g/cm ³]	
	Brushite	16.49	2.88	0.001641	(0,0,1)954 (1,0,0)954	2.312	
	Hydroxyapatite	18.56	0.93	0.000530	(0,0,1)9.0 (1,0,0)9.0	3.06	
< >	Monetite	10.94	96.19	0.054841	(0,0,1)132.6 (1,0,0)93.4	2.922	-
Angle: 4.924 Intensity: 177.311							

RMS

Solutions:

- Use a reasonable upper limit for B1 (peak broadening, crystallite size)
- Don't trust very small crystallite sizes (e.g. < 20 nm)
- Repeat the refinement without the questionable phase (Does the fit really look worse? Or just as good?)
- Use additional information to limit B1:
 - Sintered samples: very small crystallites are unlikely
 - Cement samples: very small crystallites are reasonable

Trying to identify very poorly crystalline precipitated phases in cements? Good luck!

Micro-absorption and Brindley Correction

 \rightarrow Small volume of interaction

Phase quantification biased for phase 2!

Micro-absorption and Brindley Correction

Micro-absorption can be corrected, but mean particle* size must be known.

*not crystallite size

RMS

Reference mixture:

Add mean particle diameter (μ m) to structure files:

lesson5-ex4-file1.dia 🗵	lesson5-ex4-file1.sav 🗵	lesson5-ex4-file1.lst 🗵	Corundum.str 🔀	Fluorite.str 🗵	LiF.str 🗵	
PHASE=Corundum_A1203 // 04-004-2852 SpacegroupNo=167 Setting=1 HermannMauguin=R-32/c // PARAM=A=0.4760_0.4712^0.4808 PARAM=C=1.2993_1.2863^1.3123 // RP=4 PARAM=k1=0_0^1 k2=ANISO4 B1=ANISO^0.01 GEWICHT=SPHAR8 // GOAL=GrainSize(1,1,1) // d=12 // GOAL=d // GOAL=d //						ndum: 12 µm ite: 10 µm
GOAL=my // GOAL:corundum=GEW E=AL Wyckoff=c x= E=O-2 Wyckoff=e x	ICHT*ifthenelse(ifd 0.0000 y=0.0000 z=0 =0.3062 y=0.0000 z=	ief(d),exp(my*d*3/).3522 TDS=0.00224 =0.2500 TDS=0.0027	4),1) 764 1875			μπ

If d is defined:

GEWICHT=GEWICHT*exp(my*d*3/4)

else

GEWICHT= GEWICHT*1

my (μ) = mass absorption coefficient (calculated automatically by BGMN)

Sample lesson5-ex4-file1 (C:/xrd/S12_0008/Examples/Lesson 6/Example 4/lesson5-ex4-file1.lst)								
Phase R _{Phase} [%] Quantity [wt-%] Mean Gewicht [a.u.] Crystallite Sizes [nm] Density [g/cm ³]								
Corundum_A1203	6.05	33.37	0.024727	(1,1,1)118.5	3.981			
Fluorite	5.49	33.47	0.024800	(1,1,1)36.8	3.172			
LiF	4.36	33.17	0.024579	(1,1,1)185	2.633			

Micro-Absorption and Brindley correction:

- Try to avoid the problem in the first place (keep particle size close to 1 µm)
- Additional information (particle size from SEM, PSD analysis) required for all refined phases!
- Large particles still lead to grainy diffraction patterns. Brindleycorrection does **not** solve this problem!

33

Refinement of Site Occupancies

β-TCP: β -Ca₃(PO₄)₂

X-radiation interacts with electron shell.

On Ca²⁺ sites we detect 18 electrons.

If Ca²⁺ was replaced by Mg²⁺, we would detect 10 electrons.

Refinement of Site Occupancies

If we measure scattering from 16 electrons?

2 Solutions:

- 89 % Ca²⁺ ions + 11 % vacancies
- 75 % Ca²⁺ ions + 25 % Mg²⁺ ions

From chemical analysis & synthesis route: Mg substitutions expected

Refinement of Ca site occupancies:

 $x * Ca^{2+} + (1-x) * Mg^{2+}$ x = refined parameter

PHASE=betaTCP // 04-008-8714 SpacegroupNo=161 HermannMauguin=R3c // PARAM=A=1.0439_1.0235^1.0643 PARAM=C=3.7375_3.7001^3.7749 // RP=4 PARAM=k1=0_0^1 k2=ANISO4 B1=ANISO^0.1 GEWICHT=SPHAR8 // GOAL=GrainSize(1,1,1) // GOAL=my //	
GOAL=d // GOAL:betaTCP=GEWICHT*ifthenelse(ifdef(d),exp(my*d*3/4),1)	2 new refined parameters pCa4, pCa5
$PARAM = pCa4 = 0.5_0^{0.5}$ $PARAM = pCa5 = 1.0^{1}$	Structural limitation: SOF _{Ca4} = 0.5
E=CA+2 Wyckoff=b x=-0.2766 y=-0.1421 z=0.1658 TDS=0.00686924	
E=CA+2 Wyckoff=b x=-0.3836 y=-0.1775 z=-0.0336 TDS=0.00673765 $E=CA+2 Wyckoff=b x=-0.2721 y=-0.1482 z=0.0606 TDS=0.01873909$	Models for SOF:
$E = (CA+2(pCa4), MG+2(0.5-pCa4))$ Wyckoff=a PARAM=z=-0.0850 PARAM=TDS=0.01105396_0 E = (CA+2(pCa5), MG+2(1-pCa5)) Wyckoff=a PARAM=z=-0.2658 PARAM=TDS=0.01150138 0	Ca4: <i>pCa4</i> * Ca ²⁺ + (0.5- <i>pCa4</i>) * Mg ²⁺
E=P Wyckoff=a z=0.0000 TDS=0.00886948	Ca5: <i>pCa5</i> * Ca ²⁺ + (1- <i>pCa5</i>) * Mg ²⁺
E=O-2 Wyckoff=D x=0.0070 y=-0.1366 z=-0.0136 TDS=0.02092356 E=O-2 Wyckoff=a z=0.0400 TDS=0.02031823	
E=P Wyckoff=b $x=-0.3109 y=-0.1365 z=-0.1320 TDS=0.00802728$ E=O=2 Wyckoff=b $x=-0.2736 y=-0.0900 z=-0.0926 TDS=0.02473981$	
E=O-2 Wyckoff=b x=-0.2302 y=-0.2171 z=-0.1446 TDS=0.02316067	
E=O-2 Wyckoff=b x=-0.2735 y=0.0053 z=-0.1523 TDS=0.00752722 E=O-2 Wyckoff=b x=-0.4777 y=-0.2392 z=-0.1378 TDS=0.01652830	
E=P Wyckoff=b x= -0.3465 y= -0.1537 z= -0.2333 TDS= 0.00526379	
E=O-2 Wyckoff=D x=-0.4031 y=-0.0489 z=-0.2211 TDS=0.01118555 E=O-2 Wyckoff=b x=-0.4246 y=-0.3056 z=-0.2152 TDS=0.01184353	
E=O-2 Wyckoff=b x=-0.1814 y=-0.0805 z=-0.2233 TDS=0.01076445 E=O-2 Wyckoff=b x=-0.3696 v=-0.1748 z=-0.2735 TDS=0.01381745	

Also refine z coordinates and TDS (may be different for Mg²⁺ and Ca²⁺)

SpacegroupNo=161 HermannMauguin=R3c XrayDensity=3.081 Rphase=13.05% UNIT=NM A=1.03907+-0.00022
C=3.73189+-0.00078 k1=1 00000
GrainSize(1,1,1)=301+-33 my=0.025897+-0.000067
d = ERROR $pCa4=0.500000$
pCa5=0.596+-0.038
GEWICHT=SPHAR8, MeanValue(GEWICHT)=0.0378133 B1=ANISOLIN, MeanValue(B1)=0.00109941, sqrt3(det(B1))=0.00109664 k2=ANISO4, MeanValue(k2)=0.00000394388 Atomic positions for phase betaTCP
18 -0.2766 -0.1421 0.1658 E = (CA+2(1.0000)) $18 -0.3836 -0.1775 -0.0336 E = (CA+2(1.0000))$
18 - 0.2721 - 0.1482 0.0606 E = (CA+2(1.0000))
$\frac{18 - 0.2721 - 0.1482 \ 0.0606 \ E = (CA + 2(1.0000))}{6 \ 0.0000 \ 0.0000 \ - 0.0807 \ E = (CA + 2(0.5000), MG + 2(0.0000))}$
$\frac{18 - 0.2721 - 0.1482 \ 0.0606 \ E = (CA + 2(1.0000))}{6 \ 0.0000 \ 0.0000 \ - 0.0807 \ E = (CA + 2(0.5000), MG + 2(0.0000))}$ $z = -0.08071 + -0.00054$ $TDS = 0.0014 + -0.0063$
18 -0.2721 -0.1482 0.0606 E=(CA+2(1.0000)) 6 0.0000 0.0000 -0.0807 E=(CA+2(0.5000),MG+2(0.0000)) z=-0.08071+-0.00054 TDS=0.0014+-0.0063 6 0.0000 0.0000 -0.2659 E=(CA+2(0.5956),MG+2(0.4044))
10 0.3030 0.1773 0.0330 E=(CA+2(1.0000)) 18 -0.2721 -0.1482 0.0606 E=(CA+2(1.0000)) 6 0.0000 0.0000 -0.0807 E=(CA+2(0.5000),MG+2(0.0000)) z=-0.08071+-0.00054 TDS=0.0014+-0.0063 6 0.0000 0.0000 -0.2659 E=(CA+2(0.5956),MG+2(0.4044)) z=-0.26585+-0.00043 TDS=0.0076+-0.0046
<pre>18 -0.2721 -0.1482 0.0606 E=(CA+2(1.0000)) 6 0.0000 0.0000 -0.0807 E=(CA+2(0.5000),MG+2(0.0000)) z=-0.08071+-0.00054 TDS=0.0014+-0.0063 6 0.0000 0.0000 -0.2659 E=(CA+2(0.5956),MG+2(0.4044)) z=-0.26585+-0.00043 TDS=0.0076+-0.0046 6 0.0000 0.0000 0.0000 E=(P(1.0000)) 18 0.0070 -0.1366 -0.0136 E=(0-2(1.0000)) </pre>

Total unit cell content

(consider site multiplicities):

Site	Site Multipl.	SOF	Element
Ca1	18	1	Са
Ca2	18	1	Са
Ca3	18	1	Са
Ca4	6	0.5	Са
Ca4	6	0	Mg
Ca5	6	0.5956	Са
Ca5	6	0.4044	Mg

Site	Site Multipl.	SOF	Element	Total	
Ca1	18	1	Са	18	
Ca2	18	1	Са	18	60.5736 Ca ²⁺
Ca3	18	1	Са	18	2.4264 Ma ²⁺
Ca4	6	0.5	Са	3	42 0000 P5+
		0	Mg	0	42.0000 F
Ca5	6	0.5956	Ca	3.5736	168.0000 O ²⁻
		0.4044	Mg	2.4264	7_ 21

 $Ca_{2.8845}Mg_{0.1155}(PO_4)_2$ Mg/(Ca+Mg) = 3.85%

<u> </u>									
	А	В	С	D	E	F	G	Н	
		Mg/(Ca+Mg)					Mg/(Ca+Mg)		
1	Sample	[%] mixed	pCa4 refined	pCa5 refined	Mol Ca	Mol Mg	[%] refined	Formula	
2	120925-1	0.0	0.5	1	3.000	0.000	0.00	Ca3Mg0(PO4)2	
3	120925-2	1.0	0.5	0.891	2.969	0.031	1.04	Ca2.969Mg0.031(PO4)2	
4	120925-3	2.0	0.5	0.84	2.954	0.046	1.52	Ca2.954Mg0.046(PO4)2	
5	120925-4	4.0	0.5	0.5956	2.884	0.116	3.85	Ca2.884Mg0.116(PO4)2	
6									
7									
8									
9									
10		``````````````````````````````````````	\						
11			\mathbf{A}						
- 10									
V	Vhat	l mixec	d (solid	state r	reactio	n)	١	What we re	efine
	2	1 wt-% hyc materials	droxyapatite were not s	e show that toichiometr	raw ic			In the β -TCP st	ructure

Refinement of Site Occupancy Factors (SOF)

- Differences in electron density can be refined (expected vs. found)
- With an appropriate chemical model (consider charge balance):
 - Locate & quantify substitutions
 - Locate & quantify vacancies
- Very good data quality needed!
- Additional information (from synthesis, chemical analysis) can be helpful

Summary

Confused?

Wednesday & Thursday morning:

- Work with your own data sets
- I will assist
- Use the examples from this «How-To» session

Note for Profex:

lesson5-ex4-file1.dia 🛛 lesson5-ex4-file1.sav 🖾 lesson5-ex4-file1.lst 🔀	Corundum.str 🔀	Fluorite.str 🗵 LiF.str 🗵				
PHASE=Corundum_A1203 // 04-004-2852						
SpacegroupNo=167 Setting=1 HermannMauguin=R-32/c //						
PARAM=A=0.4760_0.4712^0.4808_PARAM=C=1.2993_1.2863^1.3123 //						
RP=4 PARAM=k1=0 0^1 k2=ANISO4 B1=ANISO^0.01 GEWICHT=SPHAR8 //						
GOAL=GrainSize(1,1,1) //						
d=12 //	These t	we lines are required by Drefey.				
GOAL=d // K Inese two lines are required by Prolex						
GOAL=my //						
GOAL:corundum=GEWICHT*ifthenelse(ifdef(d),exp(my*d*3/	(4), ¹⁾ Otho	nuice the europer will show				
E=AL Wyckoff=c x=0.0000 y=0.0000 z=0.3522 TDS=0.00224	764 UIIE	I wise the summary will show				
E=0-2 Wyckoff=e x=0.3062 y=0.0000 z=0.2500 TDS=0.0027	1875	up corrected regulter				
		uncorrected results.				

This formula is hard-coded in Profex

Sample lesson5-ex4-file1 (C:/xrd/S12_0008/Examples/tesson 6/Example 4/lesson5-ex4-file1.lst)						
Phase	R _{Phase} [%]	Quantity [wt-%]	Mean Gewicht [a.u.]	Crystallite Sizes [nm]	Density [g/cm ³]	
Corundum_A1203	6.05	33.37 K	0.024727	(1,1,1)118.5	3.981	
Fluorite	5.49	33.47	0.024800	(1,1,1)36.8	3.172	
LiF	4.36	33.17	0.024579	(1,1,1)185	2.633	

