Lesson 2 Diffractometers & Phase Identification

Nicola Döbelin RMS Foundation, Bettlach, Switzerland

Repetition: Generation of X-rays

Repetition: Powder Diffraction

RMS

Repetition: Powder Diffractometer

Analogue Cameras

Debye-Scherrer Camera:

Digital Diffractometer

Bragg-Brentano Diffractometer

RMS

Instruments

Lab	Instrument	Monochromator	Configuration
RTU	Rigaku Ultima+	Graphite Monochromator	Bragg-Brentano (Reflection)
RTU	Panalytical X'Pert	Ni-Filter	Bragg-Brentano (Reflection)
LU	Bruker D8	Ni-Filter	Bragg-Brentano (Reflection)
Uppsala Uni	Bruker D8	Ni-Filter	Bragg-Brentano (Reflection)
RTU Salaspils	Bruker D8	Energy-dispersive Detector	Bragg-Brentano (Reflection)
RMS (Uni Bern)	Panalytical X'Pert	Ni-Filter	Bragg-Brentano (Reflection)
RMS (Uni Bern)	Panalytical CubiX	Graphite Monochromator	Bragg-Brentano (Reflection)

Bragg-Brentano Diffractometer

X-ray tube

More optical elements are required to control the beam pattern.

Beam Divergence

Beam Divergence

Limiting vertical divergence with a «divergence slit» (DS)

Beam Divergence

Divergence Slit

Soller Slit

Beam Masks

Bragg-Brentano Parafocusing Diffractometer

Bragg-Brentano Parafocusing Diffractometer

Example: PANalytical X'Pert Pro MPD

Optimum Settings: Divergence Slit

RMS

Optimum Settings: Divergence Slit

Fixed vs. Variable Divergence Slit

Optimum Settings: Divergence Slit

Recommendation:

- Set divergence slit to «variable»
- Adjust «irradiated length» and beam mask for maximum illumination
- But avoid beam spill-over!

Optimum Settings: Divergence Slit

Using sample holders of various sizes?

➡ Match your Divergence Slit and Beam Mask!

Variable Divergence Slit: Irradiated Length

Variable Divergence Slit: Irradiated Length

Beam Mask

Beam Mask

RMS

Soller Slits

Soller Slits

Receiving Slit

Parrish, W. Advances in X-ray diffractometry of clay minerals. X-ray analysis papers (W. Parrish, ed.), pp. 105-129. Centrex, Eindhoven, The Netherlands, 1965.

Summary: Optical Elements

Optical Element	Effect	Too Small	Too Large
Divergence Slit	Adjusts beam length on the sample	Loss of intensity	Beam spills over sample
Soller Slit	Reduces peak asymmetry	Loss of intensity, Better resolution	More asymmetry, Less resolution
Anti-Scatter Slit	Reduces background signal	Loss of intensity	High background
Beam Mask	Adjusts beam width on the sample	Loss of intensity	Beam spills over sample
Receiving Slit	Adjusts peak width / resolution	Loss of intensity Better resolution	Loss of resolution Higher intensity
Kβ Filter	Reduces K _β peaks	-	-
Graphite Monochromator	Eliminates Kβ peaks	-	-

Detectors

RMS

Lab	Instrument	Monochr.	Detector
RTU	Rigaku Ultima+	Graphite	0D
RTU	Panalytical X'Pert	Ni-Filter	1D X'Celerator
LU	Bruker D8	Ni-Filter	1D LynxEye
Uppsala Uni	Bruker D8	Ni-Filter	1D LynxEye
RTU Salaspils	Bruker D8	Energy-disp. Detector	0D SOL-XE
RMS (Uni Bern)	Panalytical X'Pert	Ni-Filter	1D X'Celerator
RMS (Uni Bern)	Panalytical CubiX	Graphite	0D

Phase Identification

A crystal structure will generate a characteristic XRD pattern.

Feature	Origin
Peak positions	 Symmetry of the unit cell Dimensions of the unit cell
Relative peak intensities	 Coordinates of atoms in unit cell Species of atoms
Absolute peak intensities	Abundance of phasePrimary beam intensity
Peak width	 Crystallite size Stress/Strain in crystal lattice

Phase Identification

RMS

RMS

Databases containing powder diffraction data (line positions)

Database	Publisher	# of Entries	Data sets	
PDF-2	ICDD (http://www.icdd.com)	250'182	All	
PDF-4+	ICDD (http://www.icdd.com)	328'660	Inorganic	
PDF-4/Minerals	ICDD (http://www.icdd.com)	39'410	Minerals (Subset of PDF-4+)	Commercial
PDF-4/Organics	ICDD (http://www.icdd.com)	471'257	Organics	
COD	COD http://www.crystallography.net	215'708	All (excl. biopolymers)	- Open Access

(Received funding by Research Council of Lithuania (2010-2011))

Programmes for Search / Match

Programme	Publisher	Supported Databases*
HighScore	PANalytical	PDF-2/4 COD
EVA Search/Match	Bruker	PDF-2/4
PDXL2	Rigaku	PDF-2 COD
RayfleX	GE	PDF-2/4
Sleve	ICDD	PDF-2/4
Match!	Crystal Impact	PDF-2/4 COD
CSM	Oxford Cryosystems	PDF-2/4
Jade	MDI	PDF-2/4

+ many more (see http://www.ccp14.ac.uk/solution/search-match.htm)

*incomprehensive

Search / Match: Restrictions

By chemical Composition

	_				Ire	P	roperues reaks R			Re	rerer	nces		SUDT	les	_		
	1a	2a	3b	4b	5b	6b	7b		8b		1b	2b	3a	4a	5a	ба	7a	8a
P1	H																	He
P2	Li	Be	1										В	С	N	0	F	Ne
P3 1	Na	Mg											Al	Si	P	s	Cl	Ar
P4	к	Ca	Sc	TI	V	Gr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
P5	Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pď	Ag	Cd	In	Sn	Sb	Te	I	Xe
P6	Cs	Ba	La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	Π	РЬ	Bi	Po	At	Rm
P7	Fr	Ra	AC															
		1	E	Ce	Pr	Nd	Pm	Sm	Eu	Gđ	ТЬ	Dy	Ho	Er	Tm	Yb	Lu	i.
			A	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Em	Md	No	Lr	
Eleme	nts O	elect All	tion t	oy m	ouse	òaal		1	Vame		nt.							*
	0)	None				oggi	- -		Jem.	cou	int:					_		×
	•	Any Optic	onal		<u> </u>	lese	ŧ	1	=orm	ula s	um:	only	(00	с.н.	bonr	le)		*

By Subfile

Composition	n*	Structure	Properties	Peaks	References	s Subfile:	s		
						_			
-Select s	subfile	es of the ICDD	PDF database:						
×B	Battery	y materials		× Mer	dk				
×	Cemen	it materials		🗙 Met	als and alloys				
×	Cerami	ic		🗙 Mine	erals				
×	Commo	on phases		× NBS					
×	Corros	ion products		× NIST	l patterns				
×	CSD pa	atterns		X Orga	anic				
×E	ducat	tion		🗙 Pear	rson's Crystal I	Data			
×E	Explosi	ive		🗙 Phar	rmaceuticals				
×F	orens	ic		X Pigments					
×I	CSD p	atterns		X Polymers					
×I	X Inorganic Superconducting mat.								
×I	Intercalate				ites				
×I	onic c	onductors							
				Clear	all Sele	ect all			
	_								
Preset:	None	e / new set		•	Save	<u>D</u> elete	<u>R</u> eset		
🗸 Restrai	nts (6	351) +	Additional entrie	s 🔳	Peak list	📄 Data she	eet		

Summary: Phase Identification I

- Phases are identified from XRD patterns by comparing peak positions with database entries
- Search/Match software & database are required
- Various commercial / open programmes and databases
- Qualitative (sometimes semi-quantitative) results are obtained
- Phase identification is independent of Rietveld refinement (must be done before)

Question I: Polytypes

Is powder XRD the ideal tool to distinguish and identify the following phases?

Phase	Composition	Space Group
Calcite	CaCO ₃	R-3c
Magnesite	MgCO ₃	R-3c
Siderite	FeCO ₃	R-3c

Structurally very similar (polytypes)

They generate similar diffraction patterns

XRD provides no direct information on Ca/Mg/Fe content

Only changes in unit cell dimensions.

Question I: Polytypes

- Similar diffraction patterns (mostly peak shifts)
- Some information on Mg/Ca/Fe contens from unit cell dimensions

Solution:

Combine XRD with chemical analysis (ICP, XRF, EDX, XPS...)

Question II: Polymorphs

Is powder XRD the ideal tool to distinguish and identify the following phases?

Phase	Composition	Space Group
Calcite	CaCO ₃	R-3c
Vaterite	CaCO ₃	P63/mmc
Aragonite	CaCO ₃	Pnam

Structurally different (polymorphs)

Chemical analyses not able to distinguish (chem. identical)

XRD can easily distinguish

Question II: Polymorphs

- Strongly different diffraction patterns.
- Easily identified by XRD

Summary: Phase identification II

- XRD is mostly sensitive to structural differences
- Only little information on chemical differences
- Chemical analyses (XRF, ICP, EDX,...) provide complementary information
- Sometimes additional chemical information can be very helpful for phase identification
- For a comprehensive material characterization, combine XRD with chemical analysis

Typical Slit Configuration

X-ray Mirrors

- Collimators and Divergence Slits cut off intensity
- There are no lenses for X-rays (Index of refraction for all materials ~1)
- Bragg diffraction can be used to construct mirrors
- Single crystal with parabolic surface: All beams coming from the tube focus are in diffraction condition for $K\alpha_{1/2}$

Polycapillary Optics

Polycapillary glass fiber optics Conserves most of the primary beam intensity

